Multiplying a binomial by its *conjugate* yields another special product called the **Difference of Two Squares**.

Recall:
$$(a + b)(a - b) = a^2 + ab - ab - b^2 = a^2 - b^2$$

(This is the only time the Outer & Inner products of FOIL cancel each other out!)

Our job is to <u>recognize</u> the difference of squares and factor it.

Example: $4x^2 - 9y^2$

Both terms are perfect squares (coefficient and variable) with opposite signs.

Its factors are the conjugate binomials: (2x + 3y)(2x - 3y)

Using "self-talk" works well:

(sq rt of 1st term "+" sq rt of 2nd term)(sq rt of 1st term "-" sq rt of 2nd term)

Writing (or "picturing") $4x^2 - 9y^2$ as $(2x)^2 - (3y)^2$ helps too. $4x^2 - 9y^2 = (2x)^2 - (3y)^2 = (2x + 3y)(2x - 3y)$

REMEMBER:

The <u>sum</u> of squares $(4x^2 + 9y^2)$ is **NOT FACTORABLE!**

Can you factor $9x^2 - 12xy + 4y^2 - 4$

Everett Community College Tutoring Center